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A search for shape-invariant solvable potentials 

G LCvaii 
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 19 July 1988 

Abstract. We investigate a simple method of constructing potentials which is related to 
the work of Bhattacharjie and Sudarshan and for which the Schrodinger equation can be 
solved in terms of known special functions. It turns out that this method can be related 
to supersymmetric quantum mechanics and this relationship can help us to decide which 
special functions, satisfying linear homogeneous second-order differential equations, can 
be solutions of the Schrodinger equation with potentials ofthe form V(x) = W2(x) - W'(x). 
We illustrate this procedure with the example of orthogonal polynomials and obtain explicit 
expressions of wavefunctions of a wide class of shape-invariant potentials. 

1. Introduction 

Recently there has been renewed interest in simple quantum mechanical systems as a 
result of the introduction of two important concepts: supersymmetric quantum 
mechanics (see, for example, Witten 1981, Cooper and Freedman 1983, Andrianov et 
a1 1984) and shape invariance (Gendenshtein 1983). In the formalism of supersym- 
metric quantum mechanics, Hamiltonians of two systems are connected by supersym- 
metry transformations. Due to this symmetry the spectra of the two Hamiltonians are 
identical, except for the ground state. A significant development was the introduction 
of the concept of shape invariance. If the Hamiltonians related by supersymmetry 
satisfy the shape-invariance condition, the spectra and the wavefunctions can be 
determined by elementary calculations. It turned out that most of the known solvable 
potentials are shape invariant. Nevertheless shape invariance is not a general feature 
of solvable potentials (Cooper et a1 1987). A systematic study of the relationship 
between solvability and shape invariance has been carried out by Cooper er a1 (1987) 
for the Natanzon class potentials (whose solutions are hypergeometric functions). 

One can ask whether there are any other special functions which are solutions of 
the Schrodinger equation with shape-invariant potentials. Here we try to answer this 
question by investigating a simple method of finding solvable potentials. With the 
help of this method the Schrodinger equation can be transformed into various linear 
homogeneous second-order differential equations. First we try to link this method 
with the formalism of supersymmetric quantum mechanics and deduce a condition 
which has to be satisfied by any special function in order to give potentials of the form 
V(x) = W 2 ( x )  & W(x), the standard expression of potentials in supersymmetric quan- 
tum mechanics. Then we investigate whether these potentials satisfy the shape-invari- 
ance condition. These procedures are illustrated with the example of orthogonal 
polynomials as special functions. 

t Permanent address: Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, 
POB 51, Hungary 4001. 
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The arrangement of this paper is as follows. In § 2  we give a brief survey of 
supersymmetric quantum mechanics and collect the formulae necessary for subsequent 
sections. In § 3 we present a simple method of obtaining solvable potentials (Bhat- 
tacharjie and Sudarsan 1962) and link it with the formalism of supersymmetric quantum 
mechanics. We apply this method to the Jacobi, generalised Laguerre and Hermite 
polynomials in § 4 and find a potential which escaped notice in other publications. 
We also show that the potentials obtained here are examples of the different factorisa- 
tion types of Infeld and Hull (1951) and compare different classification schemes of 
the same families of potentials (Miller 1968, Cooper et a1 1987). We turn to the 
question of shape invariance in § 5. Finally we summarise the results in § 6. 

2. A brief survey of supersymmetric quantum mechanics 

In supersymmetric quantum mechanics two Hamiltonians related by supersymmetry 
have the form ( h  = 2m = 1) 

d2 
dx  

H,=-,+ V,(X) 

where 

V*(x) = W2(X)* W’(X). 

The partner Hamiltonians can be factorised as 

H- = AtA H ,  = AA+ 

where 

d 
dx  

A = - +  W(X) 

d 
dx  

A t =  --+ W(X). 

In the case of unbroken supersymmetry the ground state of H- has zero energy 
(Eh-’ = 0) and the ground-state wavefunction is related to the superpotential W(x) as 

W(X) = -(In qi-’)’. (2.5) 

n (2.6) E ( + )  = E ( - )  n + l  n = 0, 1, . . .; EL-’ = 0. 

The energy eigenvalues of H- and H ,  are identical, except for the ground state: 

The eigenfunctions of H-(9:-))  and H+(Tp)) are connected by operators Ai and A:  

Now let us turn to the question of shape invariance. Potentials are called shape 
invariant if their dependence on x, the coordinate, is similar and they differ only in 
some parameters which appear in them. In particular V+(x, a )  and V-(x, a )  are shape 
invariant if they satisfy the shape-invariance relationship: 

V+(X, ao) - V-(X, U , )  = W*(X, u O ) +  W’(X, U,) - W2(x, U , ) +  W‘(X, U , )  = R ( u , )  (2.8) 
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where the sets of parameters a, and a, are related by a functional: 

a1 = f ( a o ) .  (2.9) 
It is easy to show (Gendenshtein 1983) that the energy eigenvalues of H- are given by 

(2.10) 

ak =f k(aO). 
The eigenfunctions can also be expressed in a simple way (Dutt et a1 1986): 

9;(x, a,) = NoAt(x, ao)At(x, a , ) .  . . At(x, a, ,- ,)9~-)(x,  a,,). (2.11) 

Dabrowska et a1 (1988) found the explicit expression of the wavefunctions of a wide 
class of shape-invariant potentials using these operator techniques. 

Before closing this section we mention some recent applications of supersymmetric 
quantum mechanics. Several authors studied the Coulomb and harmonic oscillator 
problems (D’Hoker and Vinet 1985, Lahiri et a1 1987, Ding 1987, Engelfield 1988, 
Amado 1988) and the relationship of these systems in arbitrary dimensions (KosteleckL 
et a1 1985) from the point of view of supersymmetric quantum mechanics. These 
systems are especially interesting, since they have a well established group structure 
(see, for example, Wybourne 1974) and it is a straightforward task to investigate the 
relationship between the well known Lie algebras related to them and the graded Lie 
algebras (see, for example, Kac 1977) which give the mathematical framework of 
supersymmetry. 

There are applications making use of supersymmetric quantum mechanics to 
describe scattering states and scattering amplitudes (Sukumar 1985a, b, 1986, 1987, 
Khare and Sukhatme 1988). 

3. A simple method of obtaining solvable potentials 

Consider the Schrodinger equation ( h  = 2m = 1) 

d 2 9  
dx2 
-+(E - V ( x ) ) 9  = 0. (3.1) 

Its solutions generally take the form 

W X )  = f  (x)F(g(x) )  (3.2) 
where F ( g )  is a special function which satisfies a second-order differential equation: 

The form of Q(g)  and R(g)  is well defined for any special function F ( g ) .  Substituting 
W(x) = f ( x ) F ( g ( x ) )  into (3.1) leads to the second-order differential equation 

But from (3.3) it follows that 

(3.5) 
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and 

so we get the following formula: 

E - V ( X )  = R ( g ( x ) ) ( g ‘ ) ’  -f”lf’ (3.7) 

= R ( g ( x ) ) ( g ’ ) 2  - ( ( f ’ / f ) *+  (f ’ l f ) ’ ) .  (3.8) 

Since f ’ / f  can be expressed explicitly from (3.5) we can obtain E - V ( x )  in terms of 
A x ) ,  Q ( g ( x ) )  and R ( g ( x ) ) :  

This means that, once choosing Q ( g )  and R ( g )  (e.g. the type of the special function 
F ( g ) ) ,  we can experiment with different internal functions g ( x )  to see whether we can 
get reasonable potentials. In the next section some examples of finding appropriate 
g ( x )  will be given. From (3.5) we can readily calculate f ( x )  as well: 

(3.10) 

This simple method of investigating the solution of the Schrodinger equation has 
been known for a long time (Bhattacharjie and Sudarshan 1962). These authors applied 
this method to the hypergeometric, confluent hypergeometric and Bessel equations. 
Later it turned out that it can be related to algebraic methods of solving differential 
equations (Corder0 et a1 1971). Another systematic application of this method (to the 
hypergeometric functions) has been carried out by Natanzon (1971, 1979) indepen- 
dently. 

From (3.8) it is clear that this method is closely related to the theory of supersym- 
metric quantum mechanics, since in any case when R ( g ( x ) )  = 0 holds, we get 

E - V ( X )  = - W ’ ( X )  + W ’ ( X )  (3.11) 

where 

W ( x )  = -(ln(f))’. (3.12) 

Thus, investigating the structure of R ( g ( x ) )  can help us to decide which special 
functions can lead to potentials of the form W ’ ( x )  - W ’ ( x ) .  Orthogonal polynomials 
seem to be especially suited to this problem, since R(  n, g ( x ) )  = ny( n, g ( x ) )  holds for 
them. Thus, for n = 0, R ( x )  vanishes. In this case Enso= 0 and f ( x )  = ‘ P o ( x ) .  This 
means that one can generally factor out ‘ P o ( x ) ,  the ground-state wavefunction, from 
‘ P ( x ) ,  a result obtained by means of operator techniques by Dabrowska et a1 (1988). 
In cases when R ( n ,  g ( x ) ) ( g ‘ ) 2  = constant,f(x) = V 0 ( x )  for any n. When R(n,  g ( x ) ) ( g ’ ) 2  
is not constant, then f ( x )  = ‘ P o ( x ) c $ ( x )  and R ( n ,  g ( x ) ) ( g ’ ) ’  contributes to E ,  and at 
the same time it kills off the extra coordinate dependence which arises from the presence 
of $ ( x )  on the right-hand side of (3.8). 

Similar considerations can be applied to other special functions satisfying second- 
order differential equations. We shall discuss this in § 4. 
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4. Systematic study of potential problems with solutions containing orthogonal 
polynomials 

In our treatment we take only the Jacobi, generalised Laguerre and Hermite polynomials 
(P',",@'(g), L',"'(g) and H , ( g ) )  into account, since the other orthogonal polynomials 
(Gegenbauer, Chebyshev, Legendre) can be obtained as special cases from P',",@'( g ) .  

We apply the procedure described in 0 3 first to the Jacobi polynomials. It will 
turn out that we can get all the shape-invariant potentials obtained by Dabrowska et 
al (1988) and one more. There is an intimate relationship between the Jacobi poly- 
nomials and the hypergeometric function (Abramowitz and Stegun 1970). Any 
wavefunction expressed in terms of Jacobi polynomials can also be expressed in terms 
of hypergeometric functions as well. Nevertheless, in some cases it is more convenient 
to use these polynomials, because a wide class of solvable potentials can be found 
more easily if we take them as a starting point. At the same time, considerations 
presented at the end of the preceding section showed that the aspects of supersymmetric 
quantum mechanics are more transparent in the case of orthogonal polynomials. 

From the differential equation of the Jacobi polynomials (Abramowitz and Stegun 
1970) one can see that 

g P - a  (a+P+2)-  a s )  =-- 1-82 

and 

n ( n + a  + P +  1 )  
1 - g 2  R ( g )  = 

Substituting these into (3.9) yields 

(4.1) 

Since we have to get a constant ( E )  on the left-hand side, there must be at least one 
term on the right-hand side, from which a constant arises. In the most general case 
this must be one of the terms containing the parameters n, a and P of the Jacobi 
polynomials. We can make sure that, for example, the first such term gives a constant 
if g(x) satisfies the differential equation 

-- (g')' - C = constant. 
1-g 

(4.4) 

We can get three other differential equations from the remaining three terms. Of 
course, this does not mean that we can find all the possible functions g ( x ) ,  but this 
is a convenient way of finding some of them. We can get different kinds of g ( x )  
functions from these differential equations, depending on the sign of C. We list the 
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possible g(x)  arising from the first two such differential equations in table 1. When 
solving the third differential equation 

it turns out that the function x(g)  obtained from it cannot be inverted. Thus it is not 
possible to obtain a usable g(x)  in this case. The fourth differential equation 

yields 

g(x)  = (1 - exp[-2(ax + b)]}1’2 

and 

g(x)  = ( 1  -exp[-2i(ax+ b)]}”’ 

where C = a 2  and C = -a2 ,  respectively and b is a constant of integration. It can be 
shown that the latter g (x )  gives complex terms when it is substituted into (4.3), while 
it turns out that the former one has to be turned down for some other reasons mentioned 
later. 

Substituting the g(x)  listed in table 1 into (4.3) we can deduce explicit expressions 
for E,, and V(a,p,  x). When the constant term in (4.3) is different from the one 
containing n, we have to shift the n dependence to the constant term and at the same 
time we have to rid the remaining terms of n. This can be carried out by a transformation 
of the parameters. These transformations determine the n dependence of the spectrum 
in each case. 

Here we illustrate this procedure with the example of g(x)  = -i cot(ax) which leads 
us to a potential missing from the compilation of Dabrowska et a1 (1988). 

From (4.3) we get 

E - V(x) = a 2 [ ( p  - $ ) 2 +  q2] + a2[2iq( p - + ) I  cot(ax) 

- a’( n + p  +;) ( n  + p  -+) cosec2( ax)  (4.5) 

where p = ; ( a + / 3 + 1 )  and q = ; ( p - a ) .  

n dependence to the constant term E :  
Introducing s = n + p  -; and A = iq(s - n )  as new parameters we can transfer the 

E -  V ( x ) = a 2  ( n - ~ ) ~ - -  - a 2 s ( s + l )  cosec2(ax)+2a2A cot(ax). (4.6) ( ( n - s ) 2  A 2  ) 
Introducing notations similar to those used by Dabrowska et a1 (1988) we obtain the 
following expressions for E and V(x) (making sure that E,,=,, = 0): 

B2 B’ 
A’ (A - nu)’ 

E = -A2+-+ (A - nu)*-  

and 

(4.7) 

V(x) = -A2+ B2 /A2+A(A+u)  cosec’(ax)-2B cot(ax) (4.8) 

where A = sa and B = Aa2. 
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Table 1 contains all the potential and energy formulae obtained in; similar way 
from the other g(x).  It is worth mentioning that terms arising from (g’) g / ( l  -g2)2 in 
(4.3) usually ‘spoil’ the symmetry of the potentials. These terms can be eliminated as 
taking (Y = p, which is an obvious restriction of P p p ’ ( g ( x ) )  leading to the less general 
case of Gegenbauer polynomials. 

From (3.10) we get 
f(x) == (gf)-1i2(1 + g)(P+1’ i2( f  - g ) ( a + 1 ) / 2  (4.9) 

Applying the same procedure to the generalised Laguerre polynomials does not 
reveal anything new. The solutions of differential equations similar to (4.4) do not 
produce so large a variety of g(x)  as in the case of the Jacobi polynomials. We obtain 
only the three-dimensional Coulomb and oscillator potentials and the Morse potential 
(with I = 0), which all have solutions containing confluent hypergeometric functions. 
This is not surprising, since the generalised Laguerre polynomials Lp’(g) are special 
cases of lFl(a, c; g )  with a = - n  and c = (Y + 1. In this case f ( x )  is given by 

exp(-bg). (4.10) 

Taking the Hermite polynomials, similar calculations yield the one-dimensional 
harmonic oscillator potential and a potential similar to the Kratzer potential for 1 = 0. 
This restriction is in connection with the fact that the Hermite polynomials have one 
less parameter than the generalised Laguerre polynomials (or the confluent hyper- 
geometric function) which provide us with the general solutions of the Kratzer potential. 

(4.11) 

The procedure described here can be applied on any special function which satisfies 
a homogeneous linear second-order differential equation. Applying it on the hyper- 
geometric function ,Fl(a,  b ;  c ;  g(x))  we are led to a family of solvable potentials which 
overlaps with the set of potentials obtained from the Jacobi equation. 

Before turning to more general considerations we remark that many of these 
potentials have been found by Infeld and Hull (1951) in their famous paper on the 
factorisation method. (This method has been generalised since then in many respects. 
See, for example, Humi (1987,1988) and references therein.) In table 2 we also indicate 
the type of factorisation due to Infeld and Hull. It is interesting to see that each 
factorisation type corresponds to a differential equation for g(x), similar to (4.4), 
namely type A and E factorisations can be related to two such differential equations 
which arose when we applied the method described in 9 3 to the Jacobi polynomials; 
type B, C and F factorisations can be related to three such differential equations arising 
from a similar treatment of the generalised Laguerre polynomials, and finally type D 
factorisation can be related to the same treatment of Hermite polynomials. 

Miller (1968) also carried out a classification of factorisation types based on the 
Lie theory of special functions. In his system of classification he relates different 
factoristion types to different Lie algebras and special functions (hypergeometric, 
confluent hypergeometric and Bessel functions). In the classification scheme of Miller, 
type C” and type D” factorisation types are related to the Bessel functions. There are 
no examples for these factorisation types in table 1. Otherwise our results are compat- 
ible with this classification scheme, since the Jacobi polynomials can be obtained from 
the hypergeometric function as special cases and the same holds for the generalised 
Laguerre and Hermite polynomials and the confluent hypergeometric function. We 

f -1/2 ( a t l ) / 2  f ( x ) = ( g )  g 

Here 
, -112 f ( x )  = (g  1 exp(-4g2). 
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presented the above classification schemes, together with the classification system of 
Cooper et al (1987) for shape-invariant potentials, in table 2. We also presented the 
related special functions (and orthogonal polynomials) and Lie algebras due to Miller 
(1968). It is interesting that the W(x) = - B / A  + A cot( ax) (g(x)  = -i cot(ax)) case 
has escaped notice, although it is easy to fit it into any of the classification schemes. 

It would be interesting to study the relationship between Lie algebras investigated 
by Miller (1968) and graded Lie algebras which give a mathematical framework of 
supersymmetry (see, for example, Kac 1977), but this is beyond the scope of this work. 
The s l ( l / l )Osu(2)  algebra studied by Cooper et a1 (1987) in connection with the 
problem of factorisation seems to be a promising possibility. 

As for the superpotential W(x), it is easy to express it in terms of g(x)  and Q(x)  
from (3.10) and (3.12): 

W(X) = - m W ) g ’ ( x )  +tg”(x)/g’(x).  (4.12) 

We used this equation to give explicit expression of W(x) for each case in table 3. 
It has already been mentioned that, whenever R(x)  vanishes for the ground state, 

V(x) can be expressed as V(x)= W’(x)- W‘(x). In the case of orthogonal poly- 
nomials, this is automatically satisfied for n = 0. If we take the hypergeometric function 
,Fl(a,  b ;  c; g(x)),  this condition is equivalent with ab = O  for the ground state. This 
is the case for most of the potentials with solutions containing the hypergeometric 
function (or at least it can be achieved after a transformation of the parameters using 
identity relations of hypergeometric functions). But there are some exceptions, for 
example in the case of the Woods-Saxon potential (with 1 = 0), ab is not 0, so this is 
an obvious counterexample. There are some other indications that this must be the 
case. For example, there is no explicit expression for E ,  for the Woods-Saxon potential, 
only a transcendent equation which has to be solved in order to obtain eigenvalues of 
E (see Flugge 1971). 

There are some other potential problems as well with the same character, namely 
that we know the explicit expression of wavefunctions, but E, is not known explicitly, 
for example, in the case of potentials with solutions related to the Bessel functions 
(V(x)  = exp(-x/a), 1 = 0, or a particle enclosed in a sphere). It is easy to see why 
these potentials are missing from our treatment. For the Bessel functions R( v, x)  = 
1 - v2/xz, so R (  Y, x)  cannot be set to zero, irrespective of the choice of parameter v. 
For this reason it is not possible to cast V(x) in the form V(x) = W‘(x)- W‘(x). 

5. Search for shape-invariant potentials 

It is easy to prove within the framework of the simple method presented in 03 that 
the shape-invariance condition (2.8) can be satisfied by almost every potential type 
obtained here. To this end we express the superpotential W(x) in terms of g(x).  This 
can be carried out combining equation (4.12) and equations similar to (4.4) which 
enable us to express g’(x) as a function of g(x).  Here one has to be cautious since, 
when expressing g’, an ambiguity of signs arises so the signs have to be determined 
separately for each case. We listed the g’ and W(g) as functions of g in table 3. In 
the next step one can calculate V+({a,}, g)  - V-({al}, g )  with the constraint that this 
must give a constant. This means that the g dependence must vanish from this 
expression, and this condition provides us with a relationship between the sets of 
parameters {al}  and {a,} in each case. One also has to apply the appropriate change 
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of parameters mentioned in § 4. Another important thing is that, in some cases, g ( x )  
itself depends on the parameters, for example in the case of the three-dimensional 
Coulomb problem (see tables 1 and 3). 

We illustrate this procedure of obtaining W ( g )  with the family of potentials arising 
from g ( x )  obtained from the differential equations ( g ’ ) 2  = C(l  - g 2 )  in the case of the 
Jacobi polynomials ( g ( x )  = tanh(ax), coth(ax) and -i cot(ax)). After expressing 
V + ( p ,  q, g )  and V - ( p ,  q, g )  (see table 3) we recall that q ( p - $ )  = A  is constant (see, 
for example, (4.5) and (4.6)) ( A = - A ,  A and - iA  in the case of g(x)=tanh(ax) ,  
coth( ax) and -i cot( ax) ,  respectively). Now, imposing the shape-invariance condition 
(2.8) we get 

V+(PO, 4 0 ,  g )  - U P , ,  41, g )  

= C [ (   PO-^)^+ q i -  ( P I  -$ )2  - q:]  + C(-2Ao+2Al)g 

+ ~ ~ ~ P l - t ~ ~ P l + t ~ - ~ P o - ~ ~ ~ ~ o - ~ ~ 1 ~ ~ - ~ 2 ~  

= R ( p l ,  q l )  = constant. (5.1) 

When we try to eliminate the g dependence from R ( p l ,  q l )  we are led to the following 
conditions: 

~ 0 ~ P o - t ~ = ~ ~ o = ~ l = ~ l ~ ~ l - ~ ~  (5.2) 

and 

( P l - t ) ( P I + t )  = ( P o - $ ) ( P o - 5 ) .  (5 .3)  

From (5.3) we get either p 1  = p o -  1 or pi = -1 - p o ,  but only the former possibility is 
reasonable from our point of view. From (5.2) 

and 

follows. Substituting these into (5.2) we get the following expression: 

A2 ). A2 
( ~ 1 + 4 ) ~ - ( ~ 1 - 5 ) ~ + - - -  

( P 1 - 5 )  
(5.4) 

We know the exact values of C, A and pi in each case from table 1, for example when 
we take g ( x )  = -i cot(ax), C = -a2, A = - iA  and p k  = s -  k + ; .  

This procedure provides us with R ( a k )  and the functionalf(ak) in most cases (see 
§ 2 and table 3). The only exception is g ( x )  = [2( C ” 2 x +  B ) ] ” 2  arising from (g‘ ) ’g*= C 
at the Hermite polynomials. In this case the above procedure fails simply because the 
number of free parameters is less than what would be needed to eliminate the coordinate 
dependence from R ( a k ) .  This is not a problem when we apply this procedure on 
g ( x )  = C”’x - B, arising from (g’I2  = C, since V + ( g )  - V - ( g )  = 2~ is automatically 
constant in this case. 

Here we arrived at the question of the number of parameters. Parameters originate 
from different places. The most obvious examples are the arguments of the different 
orthogonal polynomials. Their number is 2 , l  and 0 for P ? 3 p ’ ( g ) ,  Lp’ (g )  and H,,(g) 
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if we disregard n as a parameter. Another parameter is C which arises from differential 
equations of the type (3.4) and which gives the length scale of the potentials. In some 
cases the constant of integration (introduced when solving these differential equations) 
also plays an important role (for example, g (x)  = (2B/a)  exp(-ax) = exp(-ax + b )  at 
the Morse potential), but in most cases it is only a coordinate shift. Therefore the 
number of significant parameters is 3, 2 or 1. 

6. Conclusions 

Here we investigated a simple method of finding solvable potentials from the point of 
view of supersymmetric quantum mechanics. This method can be used to transform 
the Schrodinger equation into a linear homogeneous second-order differential equation 
with known special functions as solutions. Combining this method with the theory of 
supersymmetric quantum mechanics we obtained conditions which must be satisfied 
by the special functions in order to lead to potentials ofthe form V(x) = W'(x) i. W'(x). 
These conditions are automatically fulfilled by the orthogonal polynomials. They are 
also fulfilled by *F,(a ,  b ;  c; g )  if ab = 0 holds for the ground state. (Potentials obtained 
from ,F,(a, b ;  c;  g)  are, of course, not independent from those obtained from the 
Jacobi polynomials, since these are special cases of the hypergeometric function.) We 
could get similar criteria for any special function (satisfying a linear homogeneous 
second-order differential equation) with an arbitrary number of parameters. This 
simple method can help us to investigate potential problems with solutions P ( x )  = 
f (x)F(g(x) ) .  A straightforward generalisation would be to search for q ( x )  as a linear 
combination of special functions. 

We have shown that applying the above method on orthogonal polynomials we 
can find examples of every single factorisation type introduced by Infeld and Hull 
(1951). It would be an interesting task to investigate the relationship of graded Lie 
algebras and Lie algebras used by Miller (1968) to classify the factorisation types in 
terms of the Lie theory of special functions. 

We have also studied the question of shape invariance in terms of the method 
described above. It turned out that the shape-invariance condition (2.8) can be satisfied 
almost in each case, depending on the number of free parameters. 
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